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Abstract

Forecast ensembles typically show a spread-skill relationship, but they are also often un-
derdispersive, and therefore uncalibrated. Bayesian model averaging (BMA) is a statistical
postprocessing method for forecast ensembles that generates calibrated probabilistic fore-
cast products for weather quantities at individual sites. This paper introduces the Spatial
BMA technique, which combines BMA and the geostatistical output perturbation (GOP)
method, and extends BMA to generate calibrated probabilistic forecasts of whole weather
fields simultaneously, rather than just weather events at individual locations. At any site
individually, Spatial BMA reduces to the original BMA technique.

The Spatial BMA method provides statistical ensembles of weather field forecasts that
take the spatial structure of observed fields into account and honor the flow-dependent in-
formation contained in the dynamical ensemble. The members of the Spatial BMA ensemble
are obtained by dressing the weather field forecasts from the dynamical ensemble with sim-
ulated spatially correlated error fields, in proportions that correspond to the BMA weights
for the member models in the dynamical ensemble. Statistical ensembles of any size can be
generated at minimal computational costs.

The Spatial BMA technique was applied to 48-h forecasts of surface temperature over the
North American Pacific Northwest in 2004, using the University of Washington mesoscale
ensemble. The Spatial BMA ensemble generally outperformed the BMA and GOP ensem-
bles and showed much better verification results than the raw ensemble, both at individual
sites, for weather field forecasts, and for forecasts of composite quantities, such as average
temperature in National Weather Service forecast zones and minimum temperature along
the Interstate 90 Mountains to Sound Greenway.
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1 Introduction

Ensemble prediction systems have been developed to generate probabilistic forecasts of

weather quantities that address the two major sources of forecast uncertainty in numerical

weather prediction: uncertainty in initial conditions, and uncertainty in model formulations.

Originally suggested by Epstein (1969) and Leith (1974), ensemble forecasts have been op-

erationally implemented on the synoptic scale (Toth and Kalnay 1993; Houtekamer et al.

1996; Molteni et al. 1996) and are under development on the mesoscale (Stensrud et al. 1999;

Wandishin et al. 2001; Grimit and Mass 2002; Eckel and Mass 2005). In a wide range of

applications, probabilistic forecasts based on ensembles provide higher economic and soci-

etal value than a single deterministic forecast (Richardson 2000; Palmer 2002; Gneiting and

Raftery 2005).

While showing significant spread–error correlations, ensemble forecasts are often biased

and underdispersive (Buizza 1997; Hamill and Colucci 1997; Grimit and Mass 2002; Scherrer

et al. 2004; Eckel and Mass 2005). Hence, to realize the full potential of an ensemble forecast

it is necessary to apply some form of statistical postprocessing, with the goal of generating

probabilistic forecasts that are calibrated and yet sharp. In the spirit of the pioneering

work of Glahn and Lowry (1972), who introduced regression-type model output statistics

approaches to a meteorological audience, various statistically-based ensemble postprocessing

techniques have been proposed. In this paper, we introduce a postprocessing technique that

combines two of these methods, Bayesian model averaging (Raftery et al. 2005) and the

geostatistical output perturbation technique (Gel et al. 2004a), to generate calibrated prob-

abilistic forecasts of whole weather fields simultaneously, rather than just weather quantities

at individual locations.

Bayesian model averaging (BMA) is a statistical technique originally developed for so-

cial and health science applications in situations with several competing statistical models

(Hoeting et al. 1999). Raftery et al. (2005) proposed the use of BMA to calibrate forecast

ensembles and generate predictive probability density functions (PDFs) for future weather

quantities. The BMA predictive PDF is a weighted average of predictive PDFs associated

with each individual ensemble member, with weights that reflect the member’s relative skill.

However, each location in the forecast domain is considered individually, and spatial corre-

lations among forecast errors are ignored.

The geostatistical output perturbation (GOP) method dresses a single deterministic

weather field forecast with simulated error fields, to obtain statistical ensembles of weather

fields that take spatial correlations into account (Gel et al. 2004a). This resembles the

perturbation approach in Houtekamer and Mitchell (1998, 2001), but in the GOP technique
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spatially correlated perturbations are applied to the outputs of numerical weather prediction

models, rather than the inputs.

In essence, the BMA technique honors ensemble information but ignores spatial corre-

lation. The GOP method takes spatial dependencies into account, but applies to a single

deterministic forecast, rather than an ensemble of weather field forecasts, and fails to honor

the flow-dependent spread that derives from the nonlinear evolution of the atmosphere and

is characteristic for dynamical ensembles.

Spatial BMA addresses these shortcomings by combining the two techniques. As in the

original BMA technique, the Spatial BMA predictive PDF is a weighted average of forecast

PDFs centered at bias-corrected versions of the ensemble member models, with weights

that relate to each member’s performance. However, in Spatial BMA the forecast PDFs

are multivariate densities with covariance structures designed to honor the spatial structure

of weather observations. The Spatial BMA technique can be used to generate statistical

ensembles of whole weather fields simultaneously, of any size, and at minimal computational

costs. At any location individually, Spatial BMA reduces to the original BMA technique.

The paper is organized as follows. In Section 2, we review the BMA and GOP methods

and describe the Spatial BMA technique in detail. In Section 3 we give an example of

Spatial BMA forecasts of surface temperature over the North American Pacific Northwest,

using the University of Washington mesoscale ensemble (Grimit and Mass 2002; Eckel and

Mass 2005). Section 4 presents verification results for Spatial BMA forecasts in calendar

year 2004, focusing on spatial and composite quantities. The paper ends with a discussion

in Section 5, in which we compare the Spatial BMA technique to the dressing approaches of

Roulston and Smith (2003) and Wang and Bishop (2005).

2 Methods

We now describe the BMA, GOP and Spatial BMA techniques, and we explain our approach

to parameter estimation.

2.1 Bayesian model averaging (BMA)

We consider an ensemble of K weather field forecasts. In our examples, this is the eight-

member University of Washington mesoscale ensemble (UWME; Eckel and Mass 2005), but

BMA applies to all forecast ensembles with physically distinguishable member models, such

as poor person’s or multi-model ensembles. With small modifications, BMA also applies

to ensembles with exchangeable members, including bred and singular-vector ensembles
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(Raftery et al. 2005).

We write y(s) for the weather quantity of interest at location s, and f1(s), . . . , fK(s)

for the respective ensemble member forecasts. With each ensemble member, we associate a

conditional PDF, gk(y(s)|f 0
k (s)), which we interpret as the conditional PDF of y(s) given that

member k is the best among the ensemble member forecasts, as indicated by the superscript.

The BMA predictive PDF for the weather quantity at site s then is

p (y(s)|f1(s), . . . , fk(s)) =
K∑

k=1

wk gk(y(s)|f 0

k (s)), (1)

where wk is the probability of ensemble member k being best. In the implementation of

Raftery et al. (2005), which applies to forecasts of surface temperature and sea-level pressure,

the conditional PDFs are univariate normal densities centered at a linearly bias-corrected

forecast. Hence, gk(y(s)|f 0
k (s)) is a univariate normal PDF with mean ak + bkfk(s) and

standard deviation σ0, assumed to be constant across ensemble members. We denote this

situation by

y(s)|f 0

k (s) ∼ N (ak + bkfk(s), σ
2

0). (2)

The BMA weights in (1) and the bias and variance parameters in (2) are estimated from

training data. The BMA weights reflect the relative performance of the ensemble member

models during the training period; since they are probabilities, they are nonnegative and

their sum is equal to 1.

The BMA method as specified by (1) is implemented in the EnsembleBMA package for

the R language (Ihaka and Gentleman 1996), which is available for download at http://cran.r-

project.org.

2.2 The geostatistical output perturbation (GOP) technique

The geostatistical output perturbation (GOP) technique dresses a single deterministic weather

field forecast with Gaussian error fields that are generated using geostatistical methods (Gel

et al. 2004a). Here, we take the deterministic weather field forecast to be a member of the

dynamical ensemble.

Specifically, let S denote a possibly large but finite set of distinct model gridpoints

or scattered observation sites. If our intention is to produce stamp maps of weather field

forecasts, this set is the model grid. For verification purposes, it is a collection of observation

locations, and the forecasts are bilinearly interpolated from the model grid to the observation

sites. We write

Y = {y(s) : s ∈ S}

3



for the weather field at the sites of interest, and Fk = {fk(s) : s ∈ S} for the respective

deterministic weather field forecast. The GOP technique employs a statistical model which

assumes that

Y|Fk ∼ MVN (ak + bkFk, Σk), (3)

where the right-hand side denotes a multivariate normal PDF centered at the bias-corrected

member forecast, ak+bkFk, and with covariance matrix Σk, with entries specified in (4) below.

Superficially, one might think of (3) as a spatial version of (2), but the relationships differ

fundamentally: in (3), we consider Fk as a single deterministic forecast without reference to

any of the other ensemble members; in (2), we consider fk(s) conditionally on this member

being the best among the ensemble member forecasts. This latter assumption of forecast k

being best generally implies a deflated variance in (2), when compared to (3), as will be seen

below. For surface temperature and sea level pressure, the use of a multivariate normal PDF

seems reasonable as an approximation, but this may not be true for other weather variables,

such as precipitation or wind speed.

The covariance matrix in (3) describes the spatial structure of the forecast error field and

needs to be estimated from training data. Gel et al. (2004a) used a parametric, stationary

and isotropic geostatistical model, which assumes that the (i, j)th element of the covariance

matrix Σk is

ρ2

k δij + τ 2

k exp

(
−
‖si − sj‖

rk

)
, (4)

where ‖si − sj‖ denotes the Euclidean distance between the respective locations, si and sj,

and δij equals 1 if si = sj and is 0 otherwise. In geostatistical terminology, ρ2
k is called the

nugget effect, ρ2
k + τ 2

k is known as the sill, and rk is called the range and indicates the rate at

which the spatial correlations of the forecast errors decay (Cressie 1993; Chilès and Delfiner

1999). Covariance structures that are more complex can be accommodated, and we discuss

some of the options in Section 5.

Note that (3) and (4) give a fully specified, multivariate normal predictive PDF for the

weather field Y. To generate statistical ensembles from this PDF, we express (3) and (4) in

the form of the stochastic representation

Y|Fk ∼ ak + bkFk + E1k + E2k, (5)

where Fk is the deterministic weather field forecast, ak and bk are scalar bias parameters,

and E1k = {ε1k(s) : s ∈ S} and E2k = {ε2k(s) : s ∈ S} are independent random vectors with

mean zero, satisfying

cov (ε1k(si), ε1k(sj)) = τ 2

k exp

(
−
‖si − sj‖

rk

)
,
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and cov(ε2k(si), ε2k(sj)) = ρ2
k δij, respectively. In this representation, E1k is a spatially corre-

lated error field that varies continuously with distance, and we refer to it as the continuous

component of the forecast error field. In contrast, E2k is a noise vector that stands for in-

strument and representativeness errors, and we refer to it as the discontinuous component

of the error field. Statistical GOP ensembles of any size can be obtained by simulating

E1k and E2k from their respective multivariate PDFs, and adding the simulated errors to

the bias-corrected forecast, as directed by (5). For the simulations, we use the circulant

embedding technique (Wood and Chan 1994; Gneiting et al. 2006) as implemented in the

RandomFields package for the R language (Schlather 2001). The GOP method is itself

implemented in the ProbForecastGOP package for the R language. All R packages are

available for download at http://cran.r-project.org.

2.3 Spatial BMA

We now show how to combine the BMA and GOP methods into the Spatial BMA technique.

Again, we consider a weather field Y = {Y (s) : s ∈ S} at a possibly large but finite collection

S of locations, but now conditionally on an ensemble,

F1 = {f1(s) : s ∈ S} , . . . ,FK = {fK(s) : s ∈ S}

of K weather field forecasts simultaneously, rather than just a single deterministic weather

field forecast. The Spatial BMA predictive PDF for the weather field is

p (Y|F1, . . . ,FK) =
K∑

k=1

wk gk(Y|F0

k), (6)

where wk is the respective BMA weight and is the probability that member k is the best

among the ensemble member forecasts, and gk(Y|F0
k) is the conditional PDF of Y given that

member k is best, as indicated by the superscript. In our implementation, the conditional

PDFs are multivariate normal densities centered at the bias-corrected ensemble member

forecast, ak + bkFk, and having a spatially structured covariance matrix, Σ
0
k. By analogy to

(2), we denote this situation by

Y|F0

k ∼ MVN
(
ak + bkFk, Σ

0

k

)
. (7)

In (7),

Σ
0

k =
σ2

0

ρ2
k + τ 2

k

Σk, (8)

where σ2
0 is the BMA variance in (2), Σk the spatially structured GOP covariance matrix

with entries specified in (4), and ρ2
k and τ 2

k the respective GOP covariance parameters. The
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quantity

αk =
σ2

0

ρ2
k + τ 2

k

is the ratio of the BMA variance to the GOP variance for the forecast errors, and we refer

to it as the deflation factor associated with member model k, where k = 1, . . . , K. Spatial

BMA generalizes both the standard BMA method and the GOP technique: It reduces to

the former when the set S consists of a single location only, and it reduces to the latter for

an ensemble of size K = 1, that is, a deterministic weather field forecast.

Similarly to GOP, the Spatial BMA equations (6) through (8) give a fully specified,

multivariate predictive PDF for the weather field. However, it is more practical to generate

a statistical ensemble of weather field forecasts, by sampling from the Spatial BMA predictive

PDF. Conditionally on ensemble member k being best, we can write (7) as

Y|F0

k ∼ ak + bkFk + E0

1k + E0

2k, (9)

where E0
1k and E0

2k denote the continuous and the discontinuous parts of the conditional

forecast error field, respectively, with multivariate normal PDFs equal to those described

in Section 2.2 for the unconditional counterparts, E1k and E2k, except that the covariance

matrix is rescaled by the deflation factor, αk.

The following algorithm generates a member of the Spatial BMA ensemble:

1. Sample a number k ∈ {1, . . . , K}, with probabilities given by the BMA weights,

w1, . . . , wK . This specifies the member of the dynamical ensemble to be dressed.

2. Simulate realizations of the continuous and discontinuous parts, E0
1k and E0

2k, of the

conditional forecast error field from the respective conditional PDFs.

3. Use the right-hand side of (9) to dress the bias-corrected weather field forecast, ak +

bkFk, with the simulated conditional forecast error fields, E0
1k and E0

2k.

Proceeding in this manner, we obtain Spatial BMA ensembles of weather field forecasts, of

any desired ensemble size, and at minimal computational cost.

2.4 Parameter estimation

The estimation of a Spatial BMA model for an underlying dynamical ensemble requires the

fitting of a BMA model as well as GOP models for the individual ensemble members. This

is done using prior observations and ensemble forecasts for the same prediction horizon and

forecast cycle, with forecasts that are bilinearly interpolated from the model grid to the

observation sites. We use a sliding training period consisting of the recent past. In choosing
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the width of this training period, there is a trade off, in that short training periods allow to

better adapt to changes in the ensemble and in its component members, as well as to seasonal

changes, while longer training periods tend to decrease estimation variability. Raftery et al.

(2005) showed that for 48-hour BMA forecasts of surface temperature in the North American

Pacific Northwest there are substantial gains in increasing the length of the training period

to 25 days, but there is little gain beyond. In the examples below, we adopt this choice of

a sliding 25-day training period. Other weather variables, domains and forecast lead times

may require different choices.

To fit the BMA model (1) and (2), we follow Raftery et al. (2005) in estimating the bias

parameters, ak and bk, by linear least squares regression of the observations on the respective

ensemble member forecast. The BMA weights, wk, and the BMA variance, σ2
0, are estimated

using the maximum likelihood technique in the form of the EM algorithm (Dempster et al.

1977) with a subsequent minimum CRPS step.

It remains to fit the GOP models for the weather field forecasts using member model k,

where k = 1, . . . , K. In estimating the spatial covariance parameters, ρ2
k, τ 2

k and rk in (4), it

is convenient to note that the GOP error field, εk(s) = ε1k(s) + ε2k(s), satisfies

1

2
E (εk(si) − εk(sj))

2 = ρ2

k + τ 2

k

(
1 − exp

(
−
‖si − sj‖

rk

))
,

where E denotes the expectation operator. In geostatistical language, the error field has

variogram

γk(d) = ρ2

k + τ 2

k

(
1 − e−d/rk

)
,

where d = ‖si − sj‖ denotes the Euclidean distance between two distinct observation sites,

and γk(d) is one-half the expected squared difference between errors at stations that are

distance d apart.

We now compute the sample version of the variogram, γ̂k(d), using data from the sliding

training period, as follows:

1. For each day in the training period, find the empirical error field, by subtracting the

bias-corrected forecast field from the respective field of verifying weather observations.

2. For each day in the training period, and for all pairs of observation locations on that

day, find the distance between the sites, and compute one-half the squared difference

between the forecast errors.

3. Group the distances into bins Bl with midpoints dl.

4. Compute the empirical variogram value γ̂k(dl) at distance dl, by averaging the respec-

tive one-half squared differences over the distance bin Bl.
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With this, we apply the weighted least squares technique to estimate the GOP parameters.

Specifically, if nl denotes the total number of pairs of observation sites whose distance falls

into bin Bl, the weighted least squares estimates of the covariance parameters ρ2
k, τ 2

k and rk

are the values that minimize

S
(
ρ2

k, τ
2

k , rk

)
=
∑

l

nl

(
γ̂k(xl) − (ρ2

k + τ 2
k (1 − e−dl/rk))

ρ2
k + τ 2

k (1 − e−dl/rk)

)2

.

To solve this optimization problem, we use the quasi-Newton and conjugate-gradient tech-

niques described by Byrd et al. (1995) and implemented in the R language (Ihaka and

Gentleman 1996).

Following the estimation of the spatial covariance parameters for ensemble members

k = 1, . . . , K, we combine the GOP and BMA models into the Spatial BMA model, us-

ing (6) through (8). We do the estimation using the previously mentioned R packages,

ensembleBMA and ProbForecastGOP.

3 Example

We now give an example of 48-h Spatial BMA forecasts of surface temperature over the

North American Pacific Northwest, using the University of Washington mesoscale ensemble

(UWME; Grimit and Mass 2002; Eckel and Mass 2005). In the 2004 version used here, the

UWME is an eight-member multianalysis ensemble. The members use the fifth-generation

Pennsylvania State University–National Center for Atmospheric Research (PSU-NCAR)

Mesoscale Model (MM5) driven by initial and lateral boundary conditions supplied by eight

distinct global models. Specifically; the avn member uses initial and lateral boundary con-

ditions from the Global Forecast System run by the US National Centers for Environmental

Prediction (NCEP); the cmcg member is based on the Global Environmental Multi-Scale

model run by the Canadian Meteorological Centre; the eta member uses the limited-area

mesoscale model run by NCEP; the gasp member is based on the Global AnalysiS and Pre-

diction model run by the Australian Bureau of Meteorology; the jma member is based on

the Global Spectral Model run by the Japan Meteorological Agency; the ngps member uses

the Navy Operational Global Atmospheric Prediction System run by the Fleet Numerical

Meteorology and Oceanography Center; the tcwb member is based on the Global Forecast

System run by the Taiwan Central Weather Bureau; and the ukmo member derives from the

Unified Model run by the UK Met Office. Eckel and Mass (2005) give a detailed description

of UWME.

Our example is for 48-h forecasts of the surface (2-m) temperature field over the North

American Pacific Northwest, initialized at 0000 UTC on 14 February 2004. To deal with
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Table 1: Estimates of BMA parameters for 48-h forecasts of surface temperature verifying
at 0000 UTC on 16 February 2004, using UWME. The unit for the standard deviation σ0 is
degrees Celsius.

Land Ocean

Member wk ak bk σ2
0 wk ak bk σ2

0

avn 0.11 0.93 0.90 7.78 0.03 1.13 0.87 5.20
cmcg 0.12 0.97 0.88 7.78 0.49 1.21 0.86 5.20
eta 0.19 1.05 0.91 7.78 0.08 1.23 0.86 5.20
gasp 0.00 0.88 0.87 7.78 0.00 1.05 0.87 5.20
jma 0.15 0.98 0.92 7.78 0.05 1.17 0.89 5.20
ngps 0.27 1.04 0.90 7.78 0.15 1.18 0.87 5.20
tcwb 0.00 0.85 0.83 7.78 0.00 1.08 0.83 5.20
ukmo 0.16 0.97 0.88 7.78 0.20 1.14 0.86 5.20

nonstationarities in the forecast error fields, we divided the 12-km UWME forecast grid into

two subdomains, land and ocean, and estimated separate Spatial BMA models for the two

domains, using the aforementioned 25-day sliding training period.

Table 1 shows estimates of the BMA variance, σ2
0, the BMA weights, wk, and the additive

and multiplicative bias, ak and bk, respectively, for the eight UWME members. The BMA

weights differed substantially between land and ocean. The member with the highest BMA

weight on land was the ngps model, and the cmcg model had the highest weight over the

ocean. The gasp and tcwb models performed poorly relative to the other members during

the training period and received negligible weights in both domains. The two domains also

differed in terms of the BMA variance, which was smaller over the Pacific Ocean, likely

because of a decrease in the representativeness error.

Table 2 shows estimates of the GOP covariance parameters, ρ2
k, τ

2
k and rk, for the forecast

error fields, along with estimates of the deflation factor, αk. The estimates of the nugget

effect, ρ2
k, which subsumes instrument and representativeness errors, were much larger on

land than over the Pacific Ocean. The estimates of τ 2
k were generally somewhat larger on

land than over ocean. The range, rk, corresponds to the correlation length of the continuous

component of the error field, with spatial correlations decaying to about 0.05 at distance

3rk. The estimates of the range were larger over the ocean than on land, suggesting stronger

correlations over water.

The deflation factor, αk, reflects the skill of each ensemble member, with the more accu-

rate members receiving the higher estimates. Indeed, if a member model generally performs

well, then the conditional error variance, given that it is best among the ensemble member

9



Table 2: Estimates of Spatial BMA covariance parameters and deflation factors for 48-h
forecasts of surface temperature verifying 0000 UTC on 16 February 2004, using UWME.
The unit for the standard deviations ρk and τk is degrees Celsius, and the unit for rk is km.

Land Ocean

Member ρ2
k τ 2

k rk αk ρ2
k τ 2

k rk αk

avn 2.26 6.30 129 0.91 1.08 5.87 258 0.75
cmcg 2.32 6.06 134 0.93 1.07 5.10 246 0.84
eta 2.24 6.08 124 0.94 1.06 5.58 245 0.78
gasp 2.31 7.25 163 0.81 1.02 6.11 265 0.73
jma 2.29 6.24 134 0.91 1.12 5.96 277 0.73
ngps 2.20 5.37 105 1.03 1.05 5.16 245 0.84
tcwb 2.35 6.67 149 0.86 1.03 6.98 312 0.65
ukmo 2.29 6.39 141 0.90 0.98 5.29 211 0.83

forecasts, will not be very different from the unconditional error variance, and the deflation

factor will be close to 1. Still, caution is needed in interpreting estimates of deflation factors.

For instance, the estimated deflation factors in Table 2 were generally higher on land than

they were over the ocean, and the land deflation factor for the ngps model was larger than

1, counter to intuition. These patterns can be explained by Figure 1, which illustrates the

estimation of the GOP covariance parameters for the ngps member on land and the cmcg

member over the ocean. Each panel shows both the empirical variogram of the forecast

error field, composited over the training period, and the fitted exponential variogram. The

intercept of the fitted exponential variogram equals the estimate of the nugget effect, ρ2
k,

and corresponds to the variance of instrument and representativeness errors. The horizontal

asymptote is at the estimated sill, ρ2
k + τ 2

k , and equals the estimated marginal variance of

the GOP error field. The weighted least squares technique seems to underestimate the sill

for the ngps member on land, resulting in a deflation factor that exceeds 1.

The exponential variograms fit quite well over the first 400 km, and the fit deteriorates

thereafter. This is quite typical of geostatistical applications, and is not a matter of concern.

Generally, when fitting a parametric variogram model, attention is focused on the smaller

distances, which are particularly relevant in characterizing the spatial statistical properties

of the error fields.

Figures 2 and 3 illustrate the generation of a member of the Spatial BMA ensemble on

land and over the ocean, respectively. In each figure, panel (a) shows the bias-corrected

member of the dynamical ensemble that is to be dressed. On land, this is the ngps member,

and over the ocean it is the cmcg member. Panels (b) and (c) show simulated realizations of

10
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Figure 1: Empirical variograms of 48-h forecast errors for surface temperature over a 25 day
training period ending 14 February 2004, using UWME: (a) ngps member on land, (b) cmcg
member over ocean.

the continuous and discontinuous components of the forecast error field, respectively. Panel

(d) shows the member of the Spatial BMA ensemble as the sum of the three components.

Repeating this process, statistical ensembles of any size can be generated.

For each region, we generated a Spatial BMA ensemble of 19 weather fields. These could

be displayed in the form of a stamp plot, which we omit. Ensemble forecasts for all types of

composite quantities can be derived from the statistical ensemble. For instance, we might

be interested in predicting the empirical variogram of the temperature field verifying at 0000

UTC on 16 February 2004. We computed the empirical variogram for each of the 19 members

of the Spatial BMA ensemble, using 300 distance bins. At each bin, the minimum and the

maximum of the respective 19 values envelop a 95% prediction interval for the verifying

variogram value, which we computed from the observed temperature field. Figure 4 shows

the results of this experiment. The prediction intervals generally cover the verifying empirical

variogram values.

4 Verification results

In calendar year 2004, the 0000 UTC cycle for the 12-km domain of the eight-member

University of Washington mesoscale ensemble (UWME) was operational on 245 days. For

each day, we fitted BMA, GOP and Spatial BMA models for 48-h forecasts of surface (2-m)

temperature over the North American Pacific Northwest, separately on land and over the

ocean, and using a sliding 25-day training period. We then generated Independent BMA,
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Figure 2: A member of the Spatial BMA ensemble for 48-h forecasts of surface temperature
over the land portion of the Pacific Northwest, initialized at 0000 UTC on 14 February 2004:
Adding (a) the bias-corrected UWME ngps weather field forecast, (b) the continuous, and (c)
the discontinuous component of the simulated forecast error field, we obtain (d) a member
of the Spatial BMA ensemble. Note that different color scales are used in the four panels to
make it easier to see the patterns in each one.
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Figure 3: Same as Figure 2, but for the UWME cmcg member and over the Pacific Ocean.
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Figure 4: Empirical variogram values (dots) for the verifying surface temperature field at
0000 UTC on 16 February 2004, and pointwise minimum and maximum of the empirical
variogram values (lines) from the 19-member Spatial BMA weather field ensemble (a) on
land and (b) over ocean.

GOP and Spatial BMA forecast ensembles for each day. The Independent BMA ensembles

were created by sampling from the univariate original BMA predictive PDFs at each location

separately, mistakenly assuming spatial independence of the forecast error fields. The GOP

ensembles were based on the UWME ukmo model, which had the best aggregate performance

among the ensemble member models, both on land and over the ocean. In the interest of

a fair comparison to the eight-member UWME, our GOP, Independent BMA and Spatial

BMA ensembles also had eight members only. However, the statistical ensembles allow for

ensembles of any size, and larger ensembles frequently show better verification results.

We now assess and rank the performance of the UWME, GOP, Independent BMA and

Spatial BMA ensembles, emphasizing spatial and composite quantities. On average, ob-

servations of surface temperature were available at 761 stations on land and 196 stations

over the Pacific Ocean. We verified bilinearly interpolated ensemble forecasts against the

temperature observations.

In contrast to the statistical ensembles, UWME is not designed to take instrument and

representativeness errors into account. Hence, we consider a fifth ensemble, which we denote

as UWME + Noise. To create the UWME + Noise ensemble, we added Gaussian noise to

each of the eight UWME members, at each site independently, and with mean zero and a

variance that equals the estimated nugget effect, ρ2
k, for the respective member model.
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Table 3: Mean absolute error (MAE) and average continuous ranked probability score
(CRPS) for 48-h forecasts of surface temperature over the Pacific Northwest in 2004, in
degrees Celsius.

Land Ocean
Ensemble MAE CRPS MAE CRPS
UWME 2.94 2.58 2.44 2.12
UWME + Noise 2.94 2.23 2.44 1.89
GOP 2.71 2.13 2.35 1.82
Independent BMA 2.70 1.95 2.35 1.72
Spatial BMA 2.70 1.95 2.35 1.72

4.1 Temperature forecasts at individual sites

We begin by assessing surface temperature forecasts at individual sites. For forecasts at

single sites, Spatial BMA and Independent BMA are equivalent; hence, the results for the

two ensembles are essentially identical, with any differences due to chance variability in the

generation of the ensemble members. All verifications statistics were spatially and temporally

composited over the Pacific Northwest and calendar year 2004.

Table 3 shows the mean absolute error (MAE) and the average continuous ranked prob-

ability Score (CRPS; Hersbach 2000; Gneiting et al. 2005; Wilks 2006, Section 7.5.1) for the

various ensemble methods. The MAE assesses the accuracy of the respective deterministic

forecasts. The UWME and UWME + Noise deterministic forecast is the raw ensemble mean;

for the GOP method this is the bias-corrected UWME ukmo forecast; and for the Indepen-

dent BMA and Spatial BMA techniques this is a weighted average of the bias-corrected

ensemble member forecasts. The CRPS is a scoring rule for predictive PDFs that addresses

calibration as well as sharpness, and is proper, that is, discourages hedging. The CRPS

generalizes the absolute error, to which it reduces for deterministic forecasts; it is also re-

ported in degrees Celsius, and average CRPS values can be directly compared to the MAE

(Gneiting et al. 2005). A clear rank order can be observed, in that the BMA ensembles

showed substantially lower CRPS values than the GOP ensemble, followed by the UWME

+ Noise and UWME ensembles.

To assess the calibration of the ensemble forecasts, we use the verification rank histogram

(Anderson 1996; Talagrand et al. 1997; Hamill and Colucci 1997; Hamill 2001). Figure 5

shows the histograms for the various ensembles. We also computed the respective discrepancy

from uniformity,

D =
K+1∑

j=1

∣∣∣∣pj −
1

K + 1

∣∣∣∣ , (10)
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Figure 5: Verification rank histograms for 48-hour forecasts of surface temperature over the
Pacific Northwest in 2004 for individual stations on land (top row) and over the ocean
(bottom row).

where K = 8 is the number of ensemble members and pj is the observed relative frequency

of rank j. The smaller the discrepancy, the smaller the deviation from a uniform rank

histogram, and the better the calibration. In both domains, the UWME and UWME +

Noise ensembles were underdispersive, while the GOP, Independent BMA and Spatial BMA

ensembles had rank histograms that were nearly uniform.

4.2 Temperature field forecasts

To assess the calibration of the ensembles as weather field forecasts, rather than forecasts

of weather quantities at individual sites, we use a variant of the verification rank histogram

that is tailored to this task, namely the minimum spanning tree (MST) rank histogram

(Smith and Hansen 2004; Wilks 2004). The details of the methodology are described in the

aforementioned references. Here, suffice it to say that an MST rank k ∈ {1, . . . , K + 1} is

computed based on each day’s ensemble of weather field forecasts and the verifying weather

field. This yields 245 MST ranks for each of the five ensemble techniques, and the respective

histogram is uniform if the ensemble is calibrated. Figure 6 shows the MST rank histograms

for the UWME, UWME + Noise, GOP, Independent BMA and Spatial BMA weather field

ensembles, separately on land and over the ocean, along with the discrepancy (10) that

measures the departure from uniformity. The UWME, UWME + Noise and GOP weather

field ensembles were severely underdispersive. The Independent BMA ensemble also was

underdispersive, but to a lesser extent. The MST rank histograms for the Spatial BMA

weather field ensemble departed the least from uniformity. The difference between the GOP
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Figure 6: Minimum spanning tree (MST) rank histograms for 48-h weather field forecasts
of surface temperature over the Pacific Northwest in 2004 on land (top row) and over the
ocean (bottom row).

Table 4: Coverage of nominal 77.8% prediction intervals for variogram values.

Ensemble Land Ocean
UWME 20.5 28.8
UWME + Noise 36.3 42.8
GOP 56.6 58.7
Independent BMA 30.9 46.3
Spatial BMA 60.1 57.1

and Spatial BMA ensembles corroborates the widely held perception that it is advantageous

to take account of the flow-dependent information contained in the dynamical ensemble.

As an alternative approach to the spatial verification of ensembles of weather field fore-

casts, we repeated the variogram computations in Figure 4 for the 245 available days in 2004

and the five types of weather field ensembles. Each eight-member ensemble supplies nominal
7

9
× 100% = 77.8% prediction intervals for variogram values computed from the verifying

temperature field. Table 4 shows the empirical coverage of the prediction intervals when

composited over the 245 days and 300 distance bins. For all five types of ensembles, the

empirical coverage was lower than desired, but the coverage for the GOP and Spatial BMA

ensembles was closest to nominal.
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Figure 7: National Weather Service forecast zones in the state of Washington, bordered by
the Pacific Ocean to the west, and British Columbia, Idaho and Oregon to the north, east
and south (www.atmos.washington.edu/data/images/zone.gif).

4.3 Average temperature in National Weather Service forecast
zones

Spatial correlations play crucial roles in the prediction of a number of composite quantities.

Here, we present verification results for ensemble forecasts of spatial averages of tempera-

ture. Figure 7 shows the 44 National Weather Service (NWS) forecast zones in the state

of Washington. For each zone and each day, we considered ensemble forecasts of average

surface temperature, understood as the mean of the temperature observations at the stations

within the zone.

Figure 8 summarizes verification statistics for the various types of eight-member ensem-

bles in the 44 zones. The performance of the GOP ensemble was almost identical to that of

the Spatial BMA ensemble, and we omit the respective results. Panel (a) shows the discrep-

ancy (10) that measures the departure of the verification rank histogram from uniformity.

In almost all zones, the Spatial BMA ensemble showed the lowest discrepancy. Figure 9

illustrates this for forecast zone 7, which has one of the highest numbers of stations and

contains the city of Seattle. Both UWME, UWME + Noise and the Independent BMA

ensemble were underdispersive, while the GOP and Spatial BMA ensembles had verification

rank histograms that were similar to each other and close to being uniform. The underdis-

persion of the Independent BMA ensemble is not surprising, in that the assumption of spatial
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Figure 8: Verification statistics for 48-h forecasts of average surface temperature in NWS
forecast zones in 2004. (a) Verification rank histogram discrepancy. (b) Mean ensemble
width in degrees Celsius. (c) Mean CRPS value in degrees Celsius.
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Figure 9: Verification rank histograms for 48-h forecasts of average surface temperature in
NWS forecast zone 7 in 2004.

independence of forecast errors implies an underestimation of the variance of temperature

averages.

Panel (b) in Figure 8 shows the average range of the forecast ensemble for the various

types of ensembles. The range quantifies the sharpness of the predictive distributions and

is simply the difference between the maximum and the minimum of the eight ensemble val-

ues. The UWME had the sharpest predictive distributions, but it was underdispersive, and

therefore uncalibrated. A similar comment applies to the Independent BMA ensemble. The

Spatial BMA ensemble was the least sharp, but it was better calibrated than the other types

of ensembles. Finally, to assess calibration and sharpness simultaneously, panel (c) shows

the respective aggregate continuous ranked probability score (CRPS) values. Despite being

sharpest, the UWME generally had the highest, least desirable CRPS values. The Indepen-

dent BMA and the Spatial BMA ensembles had CRPS values that were lower, and quite

similar to each other, even though the ensembles behaved quite differently in terms of cali-

bration and sharpness. Gneiting et al. (2003) argued that the goal of probabilistic forecasting

is to maximize sharpness under the constraint of calibration, and from this perspective, the
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Figure 10: Meteorological stations along the Cascades corridor of Interstate 90.

performance of the Spatial BMA ensemble is superior.

4.4 Minimum temperature along Interstate 90

We now present verification results for another composite quantity: minimum temperature

along the Interstate 90 Mountains to Sound Greenway, Washington’s primary east-west

bound highway. Accommodating 20 million travelers annually, Interstate 90 crosses the

Cascade Mountains in a dramatic mountain landscape with substantial altitude differentials.

Accurate and reliable forecasts of minimum temperature are critical to highway maintenance

operations.

Figure 10 shows the locations of 13 meteorological stations along the Cascades section of

Interstate 90, some of which are very near each other. We consider ensemble forecasts of the

minimum temperature among these 13 stations. The UWME forecasts were available on the

12-km model grid and were bilinearly interpolated to the observation locations. However,

Interstate 90 and the meteorological stations are generally located at lower altitudes, while

the surrounding gridpoints are at higher altitudes. Hence, altitude is a critical consideration,

and we applied a standard lapse rate correction of 0.65 degrees Celsius per 100 m to all five

types of forecast ensembles.

Figure 11 shows verification rank histograms for the eight-member UWME, UWME +

Noise, GOP, Independent BMA and Spatial BMA forecast ensembles. The UWME and

UWME + Noise ensembles were underdispersive. The Independent BMA ensemble was
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Figure 11: Verification rank histograms for 48-h forecasts of minimum temperature along
Interstate 90.

Table 5: Verification rank histogram discrepancy, mean ensemble width and mean CRPS
value for ensemble forecasts of minimum temperature along Interstate 90. The unit for the
ensemble range and CRPS is degrees Celsius.

Ensemble Discrepancy Range CRPS
UWME 0.68 2.76 1.55
UWME + Noise 0.47 4.37 1.67
GOP 0.18 7.75 1.53
Independent BMA 0.95 6.48 2.76
Spatial BMA 0.22 8.04 1.54

strongly biased, tending to underestimate the minimum temperature along Interstate 90.

Indeed, the minimum of a collection of independent forecasts tends to be smaller than the

minimum of a collection of forecasts that are spatially correlated. The GOP and Spatial

BMA ensembles had rank histograms that were close to being uniform. Table 5 shows the

verification rank histogram discrepancy, the mean ensemble range and the mean CRPS value

for the forecast ensembles. The UWME, GOP and Spatial BMA ensembles showed similar

CRPS values, thereby illustrating a trade-off between calibration and sharpness. In view of

our goal of maximizing sharpness under the constraint of calibration, we contend that the

GOP and Spatial BMA ensembles are preferable for most users.

5 Discussion

We have introduced the Spatial BMA method, a statistical postprocessing technique for cal-

ibrating forecast ensembles of whole weather fields simultaneously. Spatial BMA generalizes

and combines Bayesian model averaging (BMA) and the geostatistical output perturbation

(GOP) technique, and it honors ensemble as well as spatial statistical information. The

Spatial BMA predictive PDF for the weather field is a weighted average of multivariate nor-
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mal PDFs centered at bias-corrected members of the dynamical forecast ensemble. At any

single location, Spatial BMA reduces to the original BMA technique. It is computationally

inexpensive and can be used to generate statistical ensembles of any size.

In experiments with the University of Washington mesoscale ensemble, the Spatial BMA

ensemble compared favorably to the raw dynamical ensemble, the raw ensemble with added

observational noise, the GOP ensemble and the Independent BMA ensemble. In particular,

the minimum spanning tree histogram, a key tool in assessing the calibration of ensembles of

weather field forecasts (Smith and Hansen 2004; Wilks 2004), was closest to being uniform

for the Spatial BMA ensemble. For forecasts of composite quantities, such as temperature

averages over NWS forecast zones and minimum temperature along the Cascades corridor

of Interstate 90, the GOP ensemble and the Spatial BMA ensemble showed similar perfor-

mances, and outperformed the other types of ensembles. While our experiments were with

surface temperature fields, Spatial BMA in its present form applies to all weather variables

with forecast error distributions that are approximately Gaussian, including sea-level pres-

sure. Further research is needed to extend Spatial BMA to other weather variables, such

as precipitation or wind speed. Sloughter et al. (2006) presented a non-Gaussian version of

BMA that yields calibrated quantitative probabilistic precipitation forecasts at individual

sites, but not for weather fields.

There are several directions into which the Spatial BMA technique could be developed.

One of them is bias correction. In the current implementation, we use a simple linear bias

correction that does not take altitude, land use, latitude, longitude, or distance from the

ocean into account. More sophisticated regression based bias removal techniques might

include some or all of these quantities as predictor variables. Another possibility is to

use a nearest neighbor approach based on distance, altitude and land use categories. This

approach is currently under investigation in the group of Clifford F. Mass in the Department

of Atmospheric Sciences at the University of Washington, and initial results are encouraging.

In modeling the covariance structure of the forecast error fields, we used a stationary

and isotropic, exponential correlation function. There are several ways in which more com-

plex, and potentially more realistic, covariance structures could be employed. Stationary

and isotropic correlation functions that are more versatile than an exponential function are

available (Gneiting 1999). Anisotropic covariance structures could also be employed; how-

ever, in the case of surface temperature over the Pacific Northwest, Gel et al. (2004b) did

not find any significant differences between longitudinal and latitudinal empirical variograms

of the forecast error fields. Finally, nonstationary covariance models could be used. In our

experiments, we dealt with nonstationarities between the land and the ocean by fitting and

generating two distinct Spatial BMA ensembles, each of which used a stationary and isotropic
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covariance structure. This was a fairly simple way to resolve nonstationarities, and yet pro-

duced good results. The methods of Paciorek and Schervish (2005) could be used to fit valid

covariance structures that are stationary on homogeneous domains, yet nonstationary glob-

ally, thereby allowing for the generation of a single Spatial BMA ensemble over all domains

simultaneously, without incurring discontinuities along the boundaries.

An issue not explicitly considered in the Spatial BMA approach is that of phase or

displacement errors. These could perhaps be addressed by partitioning the errors of the

ensemble member weather field forecasts into displacement, distortion, amplitude and resid-

ual fields, as in Du et al. (2000), and applying the Spatial BMA technique to the residual

component only, while developing parametric statistical models for displacement, distortion

and amplitude errors. This would be an interesting avenue for future research, with potential

rewards in the form of sharper yet calibrated forecast PDFs, but may require impractically

large sets of training data.

A characteristic feature of the Spatial BMA and GOP ensemble member fields is an

increase in roughness, when compared to weather fields generated by numerical weather

prediction models. This stems from Spatial BMA aiming to reproduce the spatial structure of

weather observations, including instrument and representativeness errors. The Spatial BMA

forecast error fields decompose into a smooth, continuous component and a discontinuous

component, with the latter taking the instrument and representativeness errors into account.

The discontinuous component can be ignored, if desirable, and the Spatial BMA technique

can be implemented by adding the bias-corrected weather field forecast (panel (a) in Figures

2 and 3) and the continuous component of the simulated forecast error field (panel (b))

only. This is an implementation decision that needs to be made depending on the prediction

problem at hand.

Another issue that calls for discussion is the choice of the training period. In the current

implementation, we use forecast and observation data from a sliding window consisting of

the 25 most recent days available to estimate the Spatial BMA parameters. This allows the

method to adapt rapidly to seasonal changes in the atmosphere as well as changes in the

design of the ensemble, but limits the availability of training data. A potential alternative

is to also use training data from the same season in previous years, and this could be done

using ensemble reforecasts, as proposed by Hamill et al. (2004). However, reforecasts put

high demands on computational and human resources, and they were not available to us.

We close by comparing Spatial BMA to other ensemble postprocessing techniques. Wilks

(2002) proposed to fit mixtures of multivariate normal densities to ensemble forecasts of

multivariate weather quantities. This resembles the Spatial BMA technique, but does not

take bias and calibration adjustments into account. Roulston and Smith (2003) led the way

23



in proposing to combine statistical and dynamical ensembles, and suggested the use of hybrid

ensembles, in which the members of the dynamical ensemble are dressed with errors drawn

from an archive of best member errors. A difficulty in this approach is the identification of

best members. Wang and Bishop (2005) showed that under a wide range of scenarios the best

member dressing method fails to be calibrated. They proposed a modified dressing technique,

in which statistical perturbations are generated, with flexible covariance structures that are

estimated from training data. This is similar to the Spatial BMA technique, in that the

Wang and Bishop (2005) predictive PDF is also a weighted average of multivariate normal

densities, each centered at a bias-corrected member of the dynamical forecast ensemble,

but the weights are all equal and do not depend on the member’s skill. Fortin and Favre

(2006) proposed dressing kernels for exchangeable ensembles that depend on the rank of the

member within the ensemble. This allows for differing weights, but it is often difficult to

reliably estimate the weights and the dressing kernels.

Acknowledgements

We thank Jeff Baars, Fadoua Balabdaoui, F. Anthony Eckel, Yulia Gel, Eric P. Grimit,

Nicholas A. Johnson, Clifford F. Mass, J. McLean Sloughter and Patrick Tewson, for sharing

code, comments and/or data. This research was supported by the DoD Multidisciplinary

University Research Initiative (MURI) program administered by the Office of Naval Research

under Grant N00014-01-10745.

References

Anderson, J. L., 1996: A method for producing and evaluating probabilistic forecasts from

ensemble model integrations. J. Climate, 9, 1518–1530.

Buizza, R., 1997: Potential forecast skill of ensemble prediction and spread and skill distri-

bution of the ECMWF ensemble prediction system. Mon. Wea. Rev., 125, 99–119.

Byrd, R. H., P. Lu, J. Nocedal and C. Zhu, 1995: A limited memory algorithm for bound

constrained optimization. SIAM J. Sci. Comput., 16, 1190–1208.

Chilès, J.-P. and P. Delfiner, 1999: Geostatistics: Modeling Spatial Uncertainty. Wiley, 695

pp.

Cressie, N. A. C., 1993: Statistics for Spatial Data. Wiley, revised edition, 900 pp.

24



Dempster, A. P., N. M. Laird and D. B. Rubin, 1977: Maximum likelihood from incomplete

data via the EM algorithm. J. Roy. Stat. Soc. B, 39, 1–39.

Du, J., S. Mullen and F. Sanders, 2000: Removal of distortion error from an ensemble

forecast. Mon. Wea. Rev., 128, 3347–3351.

Eckel, F. A. and C. F. Mass, 2005: Aspects of effective mesoscale, short-range ensemble

forecasting. Wea. Forecasting, 20, 328–350.

Epstein, E. S., 1969: Stochastic dynamic prediction. Tellus, 21, 739–759.

Fortin, V. and A.-C. Favre, 2006: Taking into account the rank of a member within the

ensemble for probabilistic forecasting based on the best member method. in Preprints,

18th Conference on Probability and Statistics in the Atmospheric Sciences, Atlanta, GA.

Gel, Y., A. E. Raftery and T. Gneiting, 2004a: Calibrated probabilistic mesoscale weather

field forecasting: The geostatistical output perturbation (GOP) method (with discussion).

J. Amer. Stat. Assoc., 99, 575–588.

Gel, Y., A. E. Raftery, T. Gneiting and V. J. Berrocal, 2004b: Calibrated probabilis-

tic mesoscale weather field forecasting: The geostatistical output perturbation (GOP)

method: Rejoinder. J. Amer. Stat. Assoc., 99, 589–590.

Glahn, H. R. and D. A. Lowry, 1972: The use of model output statistics (MOS) in objective

weather forecasting. J. Appl. Meteor., 11, 1203–1211.

Gneiting, T., 1999: Correlation functions for atmospheric data analysis. Quart. J. Roy.

Meteor. Soc., 125, 2449–2464.

Gneiting, T. and A. E. Raftery, 2005: Weather forecasting using ensemble methods. Science,

310, 248–249.

Gneiting, T., A. E. Raftery, F. Balabdaoui and A. H. Westveld, 2003: Verifying proba-

bilistic forecasts: Calibration and sharpness. in Proc. Workshop on Ensemble Forecast-

ing, Val-Morin, Quebec, Canada. [Available at www.cdc.noaa.gov/˜hamill/ef workshop

2003 schedule.html].

Gneiting, T., A. E. Raftery, A. H. Westveld and T. Goldman, 2005: Calibrated probabilistic

forecasting using ensemble model output statistics and minimum CRPS estimation. Mon.

Wea. Rev., 133, 1098–1118.

25
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